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Abstract In this paper we study the problem on how to find an equilibrium state
of a Kirchhoff elastic rod by evolving it in a certain way, called a geometric flow.
The elastic energy of rods would decrease during the geometric flow. We show that
rods remain smooth during the geometric flow as long as they stay embedded, e.g.,
self-penetrations do no occur. Furthermore, rods would approach an equilibrium con-
figuration asymptotically if self-penetrations are avoided during the flow.

Keywords Geometric flows · Fourth-order parabolic equations · Kirchhoff elastic
rods · Writhe

1 Introduction

The description of the physical behavior of polymers, in particular the bending of
long DNA molecules, boosted the study of elastic rod configurations. A simple math-
ematical model for the dynamics of polymers combines the elastic energy of the rod
configuration with the assumption of over-damped dynamics, which leads to a par-
abolic geometric flow of Kirchhoff elastic rods. The mathematical challenge lies in the
fact that the physical model imposes non-trivial boundary conditions to the centerline
of the rod, which has to be considered simultaneously with the higher order parabolic
flow. In [10] we derived the existence of smooth solutions up to time where inflection
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points appear on the centerlines of rods. Using the Frenet frame to describe the rod con-
figuration is very appropriate to extract the parabolic structure of the flow. However,
the chosen physical boundary condition renders inflection points as singularities in the
parametrization. In general inflection points will not constitute physical singularities,
so that the assumption of avoiding inflection points would be too restrictive in appli-
cations. It is the main goal of this article to replace this previous restriction on inflec-
tion points by a more physical condition on the appearance of self-intersections. We
resolve this issue by applying Fuller’s difference of writhe formula and the so-called
Călugăreanu-White-Fuller formula to set up the boundary conditions. The appearance
of self-intersections is not rule out a-priorily by our flow. However, we feel that the
understanding of the dynamical behavior of non-intersecting rods is a key ingredient
to analyze the more realistic scenario, where self-penetrations of the rod are ruled out
by an underlying dynamical model which preserves its knot type.

The analytical arguments used in this paper are extending the treatment in [10].
Since we are using Fuller’s difference of writhe formula and Călugăreanu–White–
Fuller formulae a number of computations get more complicated and technically dif-
ferent from previous approach.

Assume f : I = R/Z → R
3 is the centerline of a closed rod. Let γ = |∂x f | , ds =

γ dx the arclength element, and ∂s = γ−1∂x the arclength differentiation. Denote by
T = ∂s f the unit tangent vector, and κ = ∂2

s f the curvature vector of f . A rod
configuration � is a framed curve described by { f (s) ; T (s) ,M1 (s) ,M2 (s)}, where
the material frame {T,M1,M2} forms an orthonormal frame field along f . Thus, a
smooth rod configuration � gives the skew-symmetric system

⎛
⎝

T ′(s)
M ′

1(s)
M ′

2(s)

⎞
⎠ =

⎛
⎝

0 m1(s) m2(s)
−m1(s) 0 m(s)
−m2(s) −m(s) 0

⎞
⎠
⎛
⎝

T (s)
M1(s)
M2(s)

⎞
⎠,

with smooth functions m1 (s) ,m2 (s), and m (s). The Kirchhoff elastic energy E of
an isotropic rod �, is defined by

E [�] :=
∫

I

[α · (m2
1 + m2

2)+ β · m2] ds, (1.1)

where α > 0 and β ≥ 0 are constants. The terms involving α give the bending
energy, while the term involving β gives the twisting energy. It can be easily verified
that m2

1 + m2
2 = |κ|2 is a geometric quantity of curves (e.g., see [9]). To explain the

meaning of m (s), let us introduce the natural frame of the curve discussed by Bishop
(see [3] or [9] p. 607 for more details). This orthonormal frame along a given curve
f can be uniquely determined by fixing it a given point on the centerline and solving
the skew-symmetric system,

⎛
⎝

T ′(s)
U ′(s)
V ′(s)

⎞
⎠ =

⎛
⎝

0 ∗ ∗
∗ 0 0
∗ 0 0

⎞
⎠
⎛
⎝

T (s)
U (s)
V (s)

⎞
⎠.
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As we denote by θ the angle from U to M1, it can be verified that m (s) = θ ′ (s). Since
a natural frame can be thought as a frame without twisting, m(s) in Eq. 1.1 is called
twisting rate. Thus Eq. 1.1 becomes

E [�] =
∫

I

[α · |κ|2 + β · (θ ′)2] ds. (1.2)

Observe that, since the rod configuration � is entirely determined by the triple
{

f (s),
θ (s) ,M1 (0)

}
, Eq. 1.2 only depends on f and θ in { f (s) , θ (s) ,M1 (0)}. This sug-

gests that M1 (0) plays a trivial role in the analysis. Thus we will use the term
( f (s), θ(s)) to represent the rod configuration �, which is the curve-angle repre-
sentation.

We define the linking number, twisting number, and writhing number of � by

Lk[�] : = 1

4π

∫

s∈I

∫

σ∈I

〈 f (s)− gε(σ ), f ′(s)× g′
ε(σ )〉

| f (s)− gε(σ )|3 ds ∧ dσ, (1.3)

Tw[�] : = 1

2π

∫

I

〈
M ′

1(s), f ′(s)× M1(s)
〉

ds = 1

2π

∫

I

θ ′(s) ds, (1.4)

Wr [ f ] : = 1

4π

∫

s∈I

∫

σ∈I

〈 f (s)− f (σ ), f ′(s)× f ′(σ )〉
| f (s)− f (σ )|3 ds ∧ dσ. (1.5)

Here both s and σ represent the arclength parametrization for f and gε = f + ε · M1,
where ε > 0 is sufficiently small so that f and gε have no intersection.

In [10], the end point condition (or the boundary condition) was imposed through
the Călugăreanu–White–Fuller formula

Lk[�] = Tw[�] + Wr [ f ] (1.6)

using the Frenet frame along f to relate local torsion to the total twist Tw[ f ] of the
curve. However in such a formulation, torsion is only well-defined when the curve f
has no inflection points. The aim of this paper is to present an alternative approach
which is capable of avoiding this restrictive assumption. The idea is to obtain the
writhe of the curve by Fuller’s difference of writhe formula

Wr [ f1] − Wr [ f0] = 1

2π

∫

I

〈T0(x)× T1(x), T ′
0(x)+ T ′

1(x)〉
1 + 〈T0(x), T1(x)〉 dx, (1.7)

where f0 and f1 are two C2 smooth curves being close in the C1 topology (see
Lemma 8).

The reader is referred to [4,6,7] and [13] for literature of the Călugăreanu–White–
Fuller formula and its generalizations, and to [7] (or [1]) for literature (or rigorous
proof, respectively) of Fuller’s difference of writhe formulas. Fuller’s difference of
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writhe formula is also of practical significance for the computation of the writhing
number of evolving curves. If we denote by N the number of grid points chosen for
the discretization the additivity induced from Eq. 1.7 implies a computational effort
of order O(N ) rather than O(N 2).

We learn from [8] and [9] that when an isotropic elastic rod attains an equilibrium
state it must have a constant twisting rate. In the following we want to show that
the energy of rods with constant twisting rate can be rewritten as functional solely
associated to curves.

Assuming that the twisting rate m of an isotropic rod configurations � is constant
we can combine the definitions of elastic energy (1.2) and twist (1.4) to deduce

m = 2π

L[ f ]Tw[�].

Here L[ f ] = ∫
I
ds is the length of the centerline. Thus, its energy can be written as

E [�] = α

∫

I

|κ|2 ds + β

L[ f ] (2πTw[�])2 . (1.8)

The end point condition for the rod configuration can be related to the twist Tw[�]
by means of topological invariants. Specifically we use the topologically invariant
linking number Eq.1.6 to write

��

2π
:= Lk[�] = Tw[�] + Wr [ f ], (1.9)

where we choose �� to prescribe a value of Lk[�]. Note that if f and gε in Eq. 1.3
consist two closed curves the linking number is a (integer-valued) topological quantity,
while twisting number and writhing number are not. The reader is referred to Sect. 3
of [12] for more details including the argument that the linking number continues
to be an invariant under smooth perturbations of the rod configuration �. In fact, in
such a case one can set ��2π to be any real number since the material frame does not
necessarily have to coincide after one revolution along the curve.

Prescribing the value of the linking number we can compute the twist in the energy as

2πTw[�] = ��− 2πWr [ f ],

hence, inserting into Eq. 1.8 we obtain

E [�] = F [ f ] ,

where

F [ f ] := α

∫

I

|κ|2 ds + β

L[ f ] (��− 2π · Wr [ f ])2 . (1.10)
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Note that F [ f ] is solely defined by the centerline f and the choice of ��.
It is worth to mention here that as β = 0 in Eq. 1.10, this energy functional cor-

responds to the Euler–Bernoulli model of elastic rods. Thus the geometric evolution
considered below is also a generalization of the so-called curve-straightening flow (for
example, see [5,11]).

We want to emphasize that the energy (1.8) is the same as the one considered by
the authors in [10]. However, there the twist was related to total torsion using the
self-linking number of the centerline f of the rod

Slk[ f ] = Tw[ f ] + Wr [ f ],

where

Tw[ f ] = 1

2π

∫

I

θ ′(s) ds = 1

2π

∫

I

τ ds.

In the preceding approach we eliminated writhe by prescribing the difference of the
two invariants, i.e.,

��

2π
:= Lk[�] − Slk[ f ] = Tw[�] − Tw[ f ],

and hence

2πTw[�] = �� + 2πTw[ f ] = �� +
∫

I

τ ds.

Comparing the two formulae we deduce that in order to describe the same geometric
evolution of an initial curve f0 under both flows we need to ensure that the twist of
the rod configuration has to relate to the same topological invariants. This implies an
identity relating the prescription values �� and ��,

��−�� = Slk[ f ] = Slk[ f0] = Tw[ f0] + Wr [ f0]. (1.11)

Writing the rod energy as an energy of its centerline yields the following useful
identification: Similar to the strategy in [10] one can prove that finding equilibrium
rod configurations for E [�] is equivalent to finding equilibrium centerline curves for
F [ f ]. In more detail we have the equivalence

Proposition 1 Let f : I = R/Z → R
3 be the centerline of a closed rod �. Letµ > 0

be a constant, and define

Eµ [�] := E [�] + µL[ f ],
Fµ [ f ] := F [ f ] + µL[ f ].
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Then,

(i) subject to variations of the end point condition�� in Eq.1.9,� is an equilibrium
of the elastic energy Eµ if and only if f is a critical point of the geometric

functional Fµ and the twisting rate is equal to the constant ��−2π ·Wr [ f ]
L[ f ] along

f .
(ii) subject to length-preserving variations of the end point condition�� in Eq.1.9,

� is an equilibrium of the elastic energy E if and only if f is a critical point
of the geometric functional F and the twisting rate is equal to the constant
��−2π ·Wr [ f ]

L[ f ] along f .

Due to Proposition 1 we are able to reformulate the variational problem for equi-
librium elastic rods into a variational problem for geometric curves describing their
centerline.

In this article we are going to assume over-damped relaxation dynamics, that is we
work on the L2 gradient flow of Fµ.

In Sect. 3, cf. Lemma 10, we show that this flow can be written in the form

∂t f = 2α ·
(

−∇2
s κ − |κ|2

2
κ

)
+ λ2 (t) · ∇s (T × κ)+ λ1 · κ. (1.12)

Here the covariant derivative ∇sη denotes the normal component of ∂sη,

λ2 (t) = 2β

L[ f ] (��− 2π · Wr [ f ]) . (1.13)

Furthermore, in the case of the length-preserving flow, we have

λ1 (t) =
2α
∫
I
〈κ,∇2

s κ + |κ|2
2 κ〉ds − 2β

L[ f ] (��− 2π · Wr [ f ]) ∫
I
〈κ,∇s (T × κ)〉ds

∫
I
|κ|2 ds

.

(1.14)

If we drop the condition of length-preservation we can adopt the simpler relation
λ1 = µ.

The main results of this article regard the long time existence of solutions of the
flow with or without length-preservation.

Theorem 1 For any real numbers µ ∈ [0,∞) and�� and any smooth initial closed
curve f0 there exists a smooth solution to the L2-gradient flow in Eq.1.12, until the
appearance of self-intersection. If µ > 0 and assuming no self-intersection during
the flow, the curves subconverge to f∞, an equilibrium of the energy functional Fµ
after reparametrization by arclength and translation.

Theorem 2 For any real numbers �� and any smooth initial closed curve f0 there
exists a smooth solution to the L2-gradient flow in Eq.1.12, subject to fixed length,
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until the appearance of self-intersection. With the assumption of no self-intersection
during the flow, the curves subconverge to f∞, an equilibrium of the energy functional
F after reparametrization by arclength and translation.

The article is arranged as follows. To present a short and self-consistent exposition
we introduce in Sect. 2 a bit of notation and collect some results from [5,10], and
[1]. Section 3 contains the proofs of the main results. Finally, we present in Sect. 4 a
numerical experiment to show that the new approach behaves satisfactory when points
of vanishing curvature arise during the evolution of the flow.

2 Preliminaries and notations

We summarize for the reader the following identities and estimates from [5].

Lemma 1 ([5, Lemma 2.1]) Suppose φ is any normal field along f and f : [0, ε)×
I → R

n is a time dependent curve satisfying ∂t f = V + ϕT , where V is the normal
velocity and ϕ = 〈T, ∂t f 〉. Then the following formulae hold.

∇sφ = ∂sφ + 〈φ, κ〉 T, (2.1)

∂t (ds) = (∂sϕ − 〈κ, V 〉) ds, (2.2)

∂t∂s − ∂s∂t = (〈κ, V 〉 − ∂sϕ) ∂s, (2.3)

∂t T = ∇s V + ϕ · κ, (2.4)

∂tφ = ∇tφ − 〈∇s V + ϕκ, φ〉 T, (2.5)

∇tκ = ∇2
s V + 〈κ, V 〉 κ + ϕ · ∇sκ, (2.6)

(∇t∇s − ∇s∇t ) φ = (〈κ, V 〉 − ∂sϕ)∇sφ + 〈κ, φ〉 ∇s V − 〈∇s V, φ〉 · κ. (2.7)

Lemma 2 ([5, Lemma 2.2]) Suppose f : [0, t1)×I → R
n moves in a normal direction

with velocity ∂t f = V, φ is a normal vector field along f , and ∇tφ+∇4
s φ = Y . Then

d

dt

1

2

∫

I

|φ|2 ds +
∫

I

∣∣∣∇2
s φ

∣∣∣2 ds =
∫

I

〈Y, φ〉 ds − 1

2

∫

I

|φ|2 〈κ, V 〉 ds. (2.8)

Furthermore, ψ = ∇sφ satisfies the equation

∇tψ + ∇4
sψ = ∇sY + 〈κ, φ〉 ∇s V − 〈∇s V, φ〉 κ + 〈κ, V 〉ψ. (2.9)

For normal vector fields φ1, . . . , φk along f , we denote by φ1 ∗ ∗ ∗ φk a term of
the type

φ1 ∗ ∗ ∗ φk =
{ 〈φi1 , φi2〉 . . . 〈φik−1, φik 〉, for k even,

〈φi1 , φi2〉 . . . 〈φik−2 , φik−1〉 · φik , for k odd,

where i1, . . . , ik is any permutation of 1, . . . , k. Slightly more generally, we allow
some of the φi to be functions, in which case the ∗-product reduces to multiplication.
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For a normal vector field φ along f , we denote by Pµν (φ) any linear combination
of terms of the type ∇ i1

s φ ∗ · · · ∗ ∇ iν
s φ with universal constant coefficients, where

µ = i1 +· · ·+ iν is the total number of derivatives. Notice that the following formulae
hold:

⎧⎨
⎩

∇s
(
Pa

b (φ) ∗ Pc
d (φ)

) = ∇s Pa
b (φ) ∗ Pc

d (φ)+ Pa
b (φ) ∗ ∇s Pc

d (φ) ,

Pa
b (φ) ∗ Pc

d (φ) = Pa+c
b+d (φ) ,∇s Pc

d (φ) = Pc+1
d (φ) .

(2.10)

Similarly, we denote by Qµ
ν (κ) the linear combination of ∂ i1

s κ ∗ ∗ ∗ ∂ iν
s κ , where

i1 + · · · + iν = µ.
The following lemma states the important interpolation inequality for higher order

curvature functionals.

Lemma 3 ([5, Proposition 2.5]) For any term Pµν (κ) with ν ≥ 2 which contains only
derivatives of κ of order at most k − 1, we have

∫

I

∣∣Pµν (κ)
∣∣ ds ≤ cL [ f ]1−µ−ν ‖κ‖ν−γ2 ‖κ‖γk,2 , (2.11)

where γ = (µ+ 1
2ν − 1

)
/k, c = c (n, k, µ, ν), and

‖κ‖k,p :=
k∑

i=0

∥∥∥∇ i
sκ

∥∥∥
p
,

∥∥∥∇ i
sκ

∥∥∥
p

:= L [ f ]i+1−1/p

⎛
⎝
∫

I

∣∣∣∇ i
sκ

∣∣∣p ds

⎞
⎠

1/p

.

Moreover, if µ+ 1
2ν < 2k + 1, then γ < 2 and we have for any ε > 0,

∫

I

∣∣Pµν (κ)
∣∣ ds ≤ ε

∫

I

|∇k
s κ|2ds + cε

−γ
2−γ

⎛
⎝
∫

I

|κ|2 ds

⎞
⎠

ν−γ
2−γ

+ c

⎛
⎝
∫

I

|κ|2 ds

⎞
⎠
µ+ν−1

.(2.12)

Lemma 4 ([5, Lemma 2.6]) We have the identities

∇sκ − ∂sκ = |κ|2 T, (2.13)

∇m
s κ − ∂m

s κ =
[ m

2 ]∑
i=1

Qm−2i
2i+1 (κ)+

[ m+1
2 ]∑

i=1

Qm+1−2i
2i (κ) T . (2.14)

Lemma 5 ([5, Lemma 2.7]) Assume the bounds ‖κ‖L2 ≤ �0 and
∥∥∇m

s κ
∥∥

L1 ≤ �m

for m ≥ 1. Then for any m ≥ 1 one has

∥∥∥∂m−1
s κ

∥∥∥
L∞ + ∥∥∂m

s κ
∥∥

L1 ≤ cm (�0, . . . , �m) . (2.15)
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In [10] the authors proved the following extension to terms related to torsion.

Lemma 6 ([10, Lemma 3.2]) For m ≥ 2, we have the formula,

∇m
s (T × κ) = T × ∇m

s κ +
∑

a1,b1,c1,d1

[
Pa1

b1
(κ)× Pc1

d1
(κ)
]⊥

+
∑

i=1,2

∑

a(i)2 ,b(i)2 ,c(i)2 ,d(i)2 ,e(i)2 , f (i)2

[(
P

ai
2

bi
2
(κ)× P

ci
2

di
2
(κ)

)
∗ P

ei
2

f i
2
(κ)

]⊥

+
∑

i=1,2

∑

a(i)3 ,b(i)3 ,c(i)3 ,d(i)3

((
T × P

a(i)3

b(i)3

(κ)

)
∗ P

c(i)3

d(i)3

(κ)

)
,

where the sums are taken such that (a1 + c1)+(b1 + d1) /2 = m, (a(i)2 +c(i)2 +e(i)2 )+
(b(i)2 + d(i)2 + f (i)2 )/2 = m − i , and (a(i)3 + c(i)3 )+ (b(i)3 + d(i)3 )/2 = m − i + 1/2 for
i ∈ {1, 2}.

Lemma 7 ([10, Lemma 3.3]) Let σ and λ1,2 ∈ R. Suppose

∂t f = −∇2
s κ + σ |κ|2 κ + λ1κ + λ2∇s (T × κ) .

Then the derivatives of the curvature φm = ∇m
s κ,m ≥ 0, satisfy

∇tφm + ∇4
s φm (2.16)

= Pm+2
3 (κ)+ σ ·

(
Pm+2

3 (κ)+ Pm
5 (κ)

)
+ λ1 ·

(
∇m+2

s κ + Pm
3 (κ)

)

+ λ2 ·
(
∇m+3

s (T × κ)+ ∇m+1
s (T × κ) ∗ P0

2 (κ)+ · · · + ∇1
s (T × κ) ∗ Pm

2 (κ)
)
.

The statement is still true when λi = λi (t) depends on time.

From [1] we collect the relevant results concerning the writhe of a curve. The first
is the difference of writhe formula which implies the second result on the derivative
of writhe as well.

Lemma 8 ([1, Proposition 5]) Let X0,X1 : [0, 1] → R
3 be two closed non self-

intersecting space curves of class C2 with regular parametrization. Let F : [0, 1] ×
[0, 1] → R

3, (x, λ) → Xλ(x) be a C0 deformation of X0 into X1 such that Xλ are
non self-intersecting space curves of class C1 and the unit tangent Tλ(x) changes
continuously in λ. If |�(T1(x), Tλ(x))| < π for all (x, λ) ∈ [0, 1] × [0, 1], then

Wr [X1] − Wr [X0] = 1

2π

∫

I

〈T0(x)× T1(x), T ′
0(x)+ T ′

1(x)〉
1 + 〈T0(x), T1(x)〉 dx .
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Lemma 9 ([1, Corollary 8]) If F : [0, 1] × [0, 1] → R
3, (x, λ) → Xλ(x) is of class

C2, then

d

dλ
Wr [Xλ] = − 1

2π

1∫

0

〈
∂

∂λ
T (x, λ)× T (x, λ),

∂

∂x
T (x, λ)

〉
dx, (2.17)

where T (x, λ) = d
dx Xλ(x)/| d

dx Xλ(x)| is the unit tangent vector field along Xλ.

3 Proof of the main results

Lemma 10 Suppose f = f (ε, x), f : (−1, 1)× I → R
3, is a one-parameter smooth

family of closed curves. Let

K [ f ] := 1

2

∫

I

|κ|2ds.

Then, one has the following deformation formulae:

d
dεL [ f ] �ε=0 = −∫

I
〈κ, ∂ε f 〉�ε=0ds,

d
dεK [ f ] �ε=0 = ∫

I
〈∇2

s κ + |κ|2
2 κ, ∂ε f 〉�ε=0ds,

d
dεWr [ f ] = 1

2π

∫
I
〈∂ε f, ∂s (T × κ)〉ds = −1

2π

∫
I
〈∂εT, T × κ〉ds.

Furthermore, the Euler–Lagrange equation of Fµ (or F subject to variations of fixed
length) is

2α · (−∇2
s κ − |κ|2

2
κ)+ λ2 (t) · ∇s (T × κ)+ λ1 · κ = 0, (3.1)

where λ2 is defined in Eq.1.13, and λ1 is equal to the positive constant µ (or alterna-
tively defined in Eq.1.14).

Proof The first two formulae are quoted from [5] (or Lemma 3.1 of [10]).
The last one is derived from Fuller’s difference of writhe formula. In other words,

by Eq. 2.17,
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d

dε
Wr [ fε] = −1

2π

∫

I

〈∂εT (ε, x)× T (ε, x), ∂x T (ε, x)〉dx

= −1

2π

∫

I

〈∂εT, T × ∂s T 〉ds = 1

2π

∫

I

〈∂ε∂s f, κ × T 〉ds

(by Eq. 2.3)

= 1

2π

∫

I

〈κ × T, ∂s∂ε f + 〈κ, ∂ε f 〉 T 〉ds

= 1

2π

∫

I

〈κ × T, ∂s∂ε f 〉ds = 1

2π

∫

I

〈∂s(T × κ), ∂ε f 〉ds.

Finally, Eq. (3.1) is a direct consequence of the deformation formulae. ��

Proof of Proposition 1 The proof parallels the proof of Theorem 1.1 in [10], except
that the deformation formula of total torsion therein is replaced by the deformation
formula of writhe in Lemma 10 above. ��

The proofs of Theorem 1 and 2 are motivated by the arguments in [5]. The short
time existence is argued the same as before (see [5] for a brief sketch or [11] for more
details). We only emphasize here that the terms involving writhe (i.e., terms involving
λ1 and λ2) in standard linearization argument for short-time existence is still a compact
operator between the relevant parabolic Hölder spaces. In fact λ1 and λ2 in this article
are the same as the λ1 and λ2 in [10] respectively when there is no flat point. We thus
skip it here and focus on the long time existence and asymptotic behavior.

To prove global bounds we wish to estimate higher Sobolev norms of the curvature.
Their evolution is given by

∇t∇m
s κ = −∇4

s ∇m
s κ + tensors of lesser order.

Therefore we arrive at

d

dt

1

2

∫

I

|∇m
s κ|2ds +

∫

I

|∇m+2
s κ|2ds = terms of lesser order.

It will be not necessary to compute the error terms explicitly. It is sufficient to keep
track of their scaling. In other words, we have to know the order of the derivatives
involved.
Proof of Theorem 1 By Eqs. 2.8, 2.17, and 1.12, we have

d

dt

1

2

∫

I

|∇m
s κ|2ds +

∫

I

|∇m+2
s κ|2ds + λ1

∫

I

|∇m+1
s κ|2ds
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= λ1

∫

I

〈∇m
s κ, Pm

3 (κ)〉ds +
∫

I

〈∇m
s κ, Pm+2

3 (κ)+ Pm
5 (κ)〉ds

+ λ2 (t)
∫

I

〈∇m
s κ,∇m+3

s (T × κ)+ ∇m+1
s (T × κ) ∗ P0

2 (κ)

+ · · · + ∇1
s (T × κ) ∗ Pm

2 (κ)〉ds. (3.2)

From Lemma 10, one can verify

d

dt
Fµ [ f ] = 2α

d

dt
K [ f ] − 4πβ

L[ f ] (��− 2π · Wr [ f ]) d

dt
Wr [ f ] + λ1 · d

dt
L [ f ]

=
∫

I

〈2α(∇2
s κ + |κ|2

2
κ)− λ2 (t)∇s(T × κ)− λ1κ, ∂t f 〉ds

= −
∫

I

|2α(−∇2
s κ − |κ|2

2
κ)+ λ2 (t)∇s(T × κ)+ λ1κ|2ds

≤ 0. (3.3)

Thus, we yield that Fµ [ f ] is nonincreasing as t increases. Hence

β

L[ f ] (��− 2π · Wr [ f ])2 ≤ Fµ [ f ] ≤ Fµ [ f0] . (3.4)

Note that by Fenchel–Fary inequality of closed space curves, we have

∫

I

|κ|ds ≥ 2π, (3.5)

and then by applying Hölder’s inequality, we have

(2π)2 ≤ L[ f ] ·
∫

I

|κ|2ds. (3.6)

From Eq. 3.3 and the definition of Fµ, we have

µ · L[ f ] ≤ Fµ [ f ] ≤ Fµ [ f0] . (3.7)

Now by combining Eqs. 3.6 and 3.7, we derive uniformly upper and lower bounds of
length L[ f ],

α · (2π)2
Fµ [ f0]

≤ L [ f ] ≤ Fµ [ f0]

µ
. (3.8)
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Note that combining Eqs. 3.6 and 3.8 also gives a uniformly positive lower bound of
‖κ‖L2 , i.e.,

∫

I

|κ|2ds ≥ µ · (2π)2
Fµ [ f0]

.

By the definition of λ2 and Eqs. 3.7, 3.8 and 3.4,

|λ2 (t)| ≤ 2

√
β · Fµ [ f ]

L[ f ] ≤
√
β

π · √
α

Fµ [ f0] ≤ C
(∥∥∥∂2

s f0

∥∥∥
L2
,��,α, β, µ, L0

)
.

(3.9)

Furthermore, by Eqs. 1.10 and 3.3,

‖κ‖2
L2 ≤ C

(∥∥∥∂2
s f0

∥∥∥
L2
,��,α, β, µ, L0

)
. (3.10)

Moreover, by Eq. 2.2, we have

d

dt
L[ f ] + 1

2

∫

I

|∇sκ|2ds < C
(∥∥∥∂2

s f0

∥∥∥
L2
,��,α, β, µ, L0

)
. (3.11)

By applying Eqs. 2.12, 3.9, 3.10, and Lemma 6, the right hand side of Eq. 3.2 satisfies
the inequality,

R.H.S. of Eq. 3.2 ≤ ε

∫

I

∣∣∣∇m+2
s κ

∣∣∣2 ds + C
(∥∥∥∂2

s f0

∥∥∥
L2
,��,α, β, µ, L0,m, ε

)
.

(3.12)

Since λ1 = µ > 0 in Eq. 3.2 and by combining with Eq. 3.12, we have

d

dt

∫

I

|∇m
s κ|2ds +

∫

I

|∇m+2
s κ|2ds ≤ C

(∥∥∥∂2
s f0

∥∥∥
L2
,��,α, β, µ, L0,m

)
.(3.13)

Note that by Eq. 2.1,

|∂2
s ∇m

s κ|2 = |∇m+2
s κ|2 + 〈κ,∇m

s κ
〉 |κ|2 − 2

〈
κ,∇m+2

s κ
〉 〈
κ,∇m

s κ
〉

+ 4
〈
κ,∇m+1

s κ
〉2 + 4

〈
κ,∇m+1

s κ
〉 〈∇sκ,∇m

s κ
〉+ 〈∇sκ,∇m

s κ
〉2
,

and

|∂s∇m
s κ|2 = |∇m+1

s κ|2 + 〈κ,∇m
s κ
〉2
.
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Then, by applying Eq. 2.12 and Poincare inequality, we have

∫

I

|∇m+2
s κ|2ds ≥

∫

I

|∂2
s ∇m

s κ|2ds − ε

∫

I

|∇m+2
s κ|2ds − C

(
ε,

∥∥∥∂2
s f
∥∥∥

L2

)

≥ 2c0

∫

I

|∂s∇m
s κ|2ds − ε

∫

I

|∇m+2
s κ|2ds − C

(
ε,

∥∥∥∂2
s f
∥∥∥

L2

)

≥ 2c0

∫

I

|∇m+1
s κ|2ds − 2ε

∫

I

|∇m+2
s κ|2ds − 2C

(
ε,

∥∥∥∂2
s f
∥∥∥

L2

)
.

By choosing sufficiently small ε > 0,

∫

I

|∇m+2
s κ|2ds ≥ c0

∫

I

|∇m+1
s κ|2ds − C

(∥∥∥∂2
s f
∥∥∥

L2

)
, (3.14)

for some c0 > 0. Thus by Eqs. 3.14, 3.13 and 3.10, we have

d

dt

∫

I

|∇m
s κ|2ds + c2

0

∫

I

|∇m
s κ|2ds ≤ C

(∥∥∥∂2
s f0

∥∥∥
L2
,��,α, β, µ, L0,m

)
.

Therefore, this differential inequality implies

∥∥∇m
s κ
∥∥2

L2 (t) ≤ ∥∥∇m
s κ
∥∥2

L2 (0)+ C
(∥∥∥∂2

s f0

∥∥∥
L2
,��,α, β, µ, L0,m

)
, (3.15)

for all m ≥ 0. Notice that one has the estimate,

∥∥∥∂m−1
s κ

∥∥∥
L∞ ≤ c · ∥∥∂m

s κ
∥∥

L1 , ∀ m ≥ 1. (3.16)

Now, by an induction argument on m and using Lemma 4, 5, Eqs. 3.15, 3.16, 3.8 and
Hölder’s inequality, we derive the inequalities,

∥∥∇m
s κ
∥∥

L∞ + ∥∥∂m
s κ
∥∥

L∞ ≤ C
(∥∥∥∂2

s f0

∥∥∥
L2
,��,α, β, µ, L0,m

)
, ∀ m ≥ 0.

(3.17)

This gives uniform bound for
∥∥∂m

s κ
∥∥

L∞ for each m.
On the asymptotic behavior of the flow, we choose a subsequence of curves f (t, ·)

which converges smoothly to a curve f∞, after reparametrization of arclength and
translations. Lemma 7 and Eq. 3.17 imply

∥∥∇t
(∇m

s κ
)∥∥

L∞ ≤ C
(∥∥∥∂2

s f0

∥∥∥
L2
,��,α, β, µ, L0,m

)
, ∀ m ≥ 0.

(3.18)
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From Eq. 3.17 and 3.18, one sees that for u (t) := ∫
I
|∂t f |2ds, the inequality

∣∣u′ (t)
∣∣ ≤ C

(∥∥∥∂2
s f0

∥∥∥
L2
,��,α, β, µ, L0

)
,

holds. On the other hand, the energy identity, Eq. 3.23, implies u (t) ∈ L1 ([0,∞)).
Therefore, u (t) → 0 as t → ∞. In other words, f∞ is independent of t and thus, by
Eq.1.12, is an equilibrium of F . Now, by Proposition 1, the proof is finished. ��

Proof of Theorem 2 One again works with Eq. 3.2 to obtain integral estimates. The
main difference is that λ1 = λ1 (t), given by Eq. 1.14, is time dependent and thus might
not stay positive. In this situation we need to use different trick from the argument in
the proof of Theorem 1 to estimate the terms involving λ1 (t) in Eq. 3.2.

We first note that, by applying Eq. 3.5 and Hölder’s inequality, we have a uniformly
positive lower bound of ‖κ‖2

L2 , i.e.,

‖κ‖2
L2 ≥ 4π2

L0
> 0. (3.19)

Then by the definition of λ2 and Eq. 3.4, we have

|λ2 (t)| ≤ 2

√
β · Fµ [ f0]

L0
≤ C

(∥∥∥∂2
s f0

∥∥∥
L2
,��,α, β, µ, L0

)
. (3.20)

Thus by Eqs. 1.14, 3.19 and 2.11, we have

|λ1 (t)|
≤ C

(∥∥∂2
s f0
∥∥

L2 ,��,α, β, L0
) · ∫

I

(∣∣P2
2 (κ)

∣∣+ ∣∣P0
4 (κ)

∣∣+ ∣∣P1
2 (κ)

∣∣) ds

≤ C · (‖κ‖
2

m+2
m+2,2 · ‖κ‖2− 2

m+2
2 + ‖κ‖

1
m+2
m+2,2 · ‖κ‖4− 2

m+2
2 + ‖κ‖

1
m+2
m+2,2 · ‖κ‖2− 1

m+2
2 ).

On the other hand, by applying Eq. 2.11, we have

∣∣∣
∫

I

〈∇m
s κ, Pm

3 (κ)
〉
ds |≤

∫

I

∣∣∣P2m
4 (κ)

∣∣∣ ds ≤ c (m,L [ f ]) · ‖κ‖2− 3
m+2

m+2,2 · ‖κ‖2+ 3
m+2

2 .

Therefore,

| λ1 (t)
∫

I

〈∇m
s κ, Pm

3 (κ)
〉
ds |

≤ C
(∥∥∥∂2

s f0

∥∥∥
L2
,��,α, β, L0,m

)
·
(

‖κ‖2− 1
m+2

m+2,2 + ‖κ‖2− 2
m+2

m+2,2

)

≤ ε

∫

I

∣∣∣∇m+2
s κ

∣∣∣2 ds + C
(∥∥∥∂2

s f0

∥∥∥
L2
,��,α, β, µ, L0,m, ε

)
, (3.21)
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where the last inequality comes form applying Young’s inequality and applying

‖κ‖2
k,2 ≤ c (k) ·

(∥∥∥∇k
s κ

∥∥∥2

2
+ ‖κ‖2

2

)
. (3.22)

Notice that Eq. 3.22 comes from a standard interpolation inequality (see [2]).
Now we only need to estimate λ1 (t) ·

∫
I

∣∣∇m+1
s κ

∣∣2 ds, which is the borderline case

as applying the interpolation argument. In fact the interpolation argument fails here.
Fortunately the scaling argument, which we learn from [5], still works here. In other
words, as we rescale f by f (ρ) = p + ρ ( f − p), it is easy to very that

K
[

f (ρ)
]

= 1

ρ
K [ f ] ,Wr

[
f (ρ)
]

= Wr [ f ] , andL
[

f (ρ)
]

= ρL [ f ] .

By taking the derivative of F [ f (ρ)
]

at ρ = 1 and using Eq. 1.12, we have

2αK [ f ] − λ1L [ f ] = − d

dρ
F
[

f (ρ)
]
�ρ=1=

∫

I

〈∂t f, f − p〉 ds.

By choosing p = p (t) to be p = L−1
∫
I

f ds, we have the inequality,

−λ1 (t) ≤ L1/2 ‖∂t f ‖L2 .

Then the energy identity,

d

dt
F [ ft ] = −

∫

I

|∂t f |2 ds, (3.23)

implies the estimate,

t∫

0

(
λ−

1 (τ )
)2

dτ ≤ C
(∥∥∥∂2

s f0

∥∥∥
L2
,��,α, β, µ, L0

)
,

where λ−
1 (t) = − min {0, λ1 (t)}. Note that, by Hölder’s inequality and integration

by parts, we have

− λ1

∫

I

∣∣∣∇m+1
s κ

∣∣∣2 ds ≤ ε ·
∫

I

∣∣∣∇m+2
s κ

∣∣∣2 ds + c (ε) · (λ−
1

)2 ·
∫

I

∣∣∇m
s κ
∣∣2 ds.

(3.24)
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Below we denote by Ci = Ci
(∥∥∂2

s f0
∥∥

L2 ,��,α, β, L0,m
)
> 0,∀i ∈ Z. Then by

Eqs. 3.2, 3.12, 3.21, 3.24, we have

d

dt

∫

I

∣∣∇m
s κ
∣∣2 ds + C1 ·

∫

I

∣∣∣∇m+2
s κ

∣∣∣2 ds ≤ C2 ·
⎛
⎝1 + (λ−

1 (t)
2) ·
∫

I

∣∣∇m
s κ
∣∣2 ds

⎞
⎠ ,

(3.25)

for some sufficiently small number ε = ε
(∥∥∂2

s f0
∥∥

L2 ,��,α, β, L0,m
)
> 0. By

applying Eq. 2.1 and Poincaré inequality twice to the term
∫
I
|∇m+2

s κ|2ds in Eq. 3.25,

we have

d

dt

∫

I

∣∣∇m
s κ
∣∣2 ds + C3 ·

∫

I

∣∣∇m
s κ
∣∣2 ds ≤ C2 ·

⎛
⎝1 + (λ−

1 (t)
2) ·
∫

I

∣∣∇m
s κ
∣∣2 ds

⎞
⎠ .

Let

um (t) := exp (C1 · t) ·
∫

I

∣∣∇m
s κ
∣∣2 ds.

By applying Gronwall inequality to Eq. 3.25, we have

um (t) ≤ ea(t) ·
⎛
⎝um (0)+ C4 ·

t∫

0

eC1·τdτ

⎞
⎠ ,

where

a (t) =
t∫

0

C5 · (λ−
1 (τ ))

2dτ ≤ C
(∥∥∥∂2

s f0

∥∥∥
L2
,��,α, β, L0,m

)
.

Therefore, we obtain

∥∥∇m
s κ
∥∥2

L2 (t) ≤ C
(∥∥∥∂2

s f0

∥∥∥
L2
,��,α, β, L0,m

)
· (1 + e−C1·t · ∥∥∇m

s κ
∥∥2

L2 (0))

≤ C
(∥∥∥∂2

s f0

∥∥∥
L2
,��,α, β, L0,m

)
,

for all m ≥ 0. In addition, from the definition of λ1 in Eq. 1.14, we conclude that
|λ1| ≤ C

(∥∥∂2
s f0
∥∥

L2 ,��,α, β, L0
)
. The rest of proof proceeds the same as those in

Theorem 1. ��
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4 Numerical simulations

4.1 Introduction

To illustrate the results numerically we extend the algorithm in [10] to the new
description. Exploiting the divergence form of the main part in the evolution equation
and the partition into a 2nd order parabolic–elliptic system for the position vector f
and the curvature vector κ we write

∂t f + ∂s

(
∂sκ + 3

2 |κ|2 T − λ2 T × κ
)

= λ1κ, (4.1)

∂2
s f = κ (4.2)

and discretize the problem using an semi-implicit scheme in time and piecewise-affine
finite elements for the space dependence.

Now we have to deal with the computation for the writhe Wr [ f ] of the curve.
Using the double integral definition only for the initial curve and turning to the differ-
ence of writhe formula for subsequent time steps we can hope to keep the additional
computational effort reasonable.

4.2 Computational experiments

We conclude with a numerical experiment showing the appearance of a situation where
the flow considered previously in [10] almost immediately runs into an inflection point
scenario whereas the new flow shows an improved behavior seemingly un-effected by
the appearance of inflection points. The initial curve is chosen to be of helical shape
bent into a closed curve. This means that total torsion is large initially.

Figure 1 shows the curve obtained by evolving the initial curve under the newly
proposed flow Eq. 1.12 for a short time t1 = 0.02. Because of the short time interval
the curve plotted is nearly unchanged from the helical initial curve we started with.

On the other hand we will see in following figures that the evolution under the
old flow does not produce a reliable result. Obeying the relation of the prescription
values �� and �� in Eq. 1.11 we choose the same initial curve to be evolved by the
flow in [10]. Whereas we expect the evolution to new and old flow to be the same the
latter one is pushing the curve very fast into a configuration where the curvature vector
almost vanishes. Since this is causing the numerical computation of the torsion to fail
badly the discretized flow deviates strongly from its analytical original even before
the appearance of the actual inflection point. We want to mention that this is exactly
the situation we wanted to address with the newly proposed formulation.

We show the variation of the energy of the curve over time in Fig. 2. Clearly, the
expectation would be that the gradient flow reduces the energy which is failing to be
true for the numerical computation of the old flow. The following plots should help
to explain the reason for this failure. In Fig. 3 we plot (the logarithm of) the minimal
length of the curvature vector along the curve. In both cases this quantity is decreasing
initially but in the old flow the computation of torsion gets increasingly inaccurate if
the curvature vector is too small. We show this in Fig. 4 by plotting the evolution of
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Fig. 1 The curve at t1, evolved under the new flow
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Fig. 2 Energy F [ f ]

total torsion over time. Comparing the plot with the previous Fig. 3 we see that the
smallness of |κ|2 causes the numerical implementation of the old flow to overestimate
the correct value of total torsion after about 180 time steps (approx. 0.01 units in real
time for the time step size k = 0.001 chosen). Since computation of total torsion
affects the values for the Lagrange multipliers λ1,2 in the old flow, this failure will
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kick the curve evolution onto a very different trajectory, in particular, away from the
trajectory drawn by the new flow. Note that the new flow would also fail to compute
torsion reliable but the value does not enter the computation of the speed so that the
evolution continues in a reasonable way.
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